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Viscosity coefficients near the nematiesmecticA phase transition
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The equations of motion of nematic liquid crystals are complemented by the nonlinear Langevin equation for
the smectic order parameter fluctuations. The nonlinear terms of this equation describe coupling of the order
parameter to velocity and density. An expression for the reactive part of the stress tensor is obtained. The
complex fluctuation inputs into viscosity coefficients are calculated in the frame of the Landau—de Gennes
model near the nematic—smechctN-A) phase transition. The sound velocity dispersion and the attenuation
dependences on temperature, frequency, and the direction of the sound wave propagation are calculated. The
results obtained are sensitive to values of two critical exponents for correlation lengths.
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I. INTRODUCTION cients. Using the NAC model Swift and co-workédb,16]
considered the coupling of the order parameter fluctuations

Investigation of the nematic—smectic-(N-A) phase to the velocity. They calculated the complex input into the
transition has attached considerable interest for a long time; Leslie coefficient and analyzed its behavior near phase
[1-4] and various theoretical models for this transition havetransition point. It was found that in acoustic problems the
been analyzed2]. The emphasis is on the investigation of bulk viscosity dominates and the coupling of the smectic
the nature of the\-A transition, the construction of relevant order parameter fluctuation to the velocity is more important
models, and the determination of critical exponents for tWocompared with the coupling to the director. Actually, five
correlation lengths. The basic experimental methods applieglomplex viscosity coefficients determine the acoustic prop-
in this system are calorimetrics and light scattering. Theserties of the system. The sound velocity dispersion is deter-
methods enable one to study the equilibrium properties ofnined by the imaginary parts of these coefficients and the
N-A transitions in detail. For study of the kinetic properties sound attenuation is a linear function of the real parts.
acoustic measurements are most effective since they give The aim of this work is to calculate the frequency disper-
information on the mechanism of the phase transition. Exsjon of all five viscosity coefficients caused by the interac-
periments on the propagation of longitudinal sound wavesion of the sound wave with the smectic order parameter
have shown an anomalous increase of the attenuation anfictuations. The viscosity coefficients are contained in the
anisotropy of sound velocity dispersi¢8,5-10. The exis-  gissipative part of the stress tensor. To calculate the fluctua-
tence of two correlation length2,4,11 results in compli-  tion corrections to the stress tensor in the anisotropic uniaxial
cate dependences of the viscosity coefficients on temperatufgedium we add the nonlinear Langevin equation describing
and frequency and this in turn produces the complicated behe variation of the smectic order parameter. By solution of
havior of the acoustic parameters. 3 the system equations of motion by iteration after statistical

Unfortunately, the acoustic properties are sensitive to thgyeraging we get the fluctuation contribution to the stress
type of liquid crystal. Therefore near thé-A phase transi- tensor. This input satisfies the symmetry conditions and pro-
tion some systems show angular dependen®8,10  vides the fluctuation corrections to all viscosity coefficients.
whereas other systems do not exhibit this behajéor,9). Finally, the nematic liquid crystal acoustical properties are

The complicated point in developing the theory of acous-cajculated. It turns out that they are strongly dependent on
tic properties forN-A transition is in the necessity of ac- two critical exponents of the correlation lengths. Final results
counting for various contributions to the critical sound be-ggmit comparison of the theory and the experiment.
havior. In particular, Kiry and Martinoty5] and Swift and The article is organized as follows. In Sec. Il we construct
Mulvaney [12] have considered in detail the input of the 3 set of equations of motion for nematic liquid crystals which
smectic order parameter fluctuations into the bulk viscositynclude the equation for an additional scalar variable. They
coefficient. They calculated the temperature and frequencyre used in Sec. Il for the calculation of fluctuation inputs
dependences of this contribution which causes an isotropigto all viscosity coefficients. Sound damping and velocity

anomalous attenuation of sound and also gives an input tgispersion are derived. We discuss the obtained results in
the speed of sound near the phase transition point. Sec. IV.

To describe the anisotropy of the acoustic properties it is
necessary to calculate the contributions to other viscosity
coefficients. McMillan[13] and Jahnig and Brochard 4]
studied the coupling of the smectic order parameter fluctua-
tions to the director near the phase transition point. They The set of hydrodynamic equations for nematic liquid
calculated the fluctuation input into the ,«, Leslie coeffi-  crystals includes the continuity equatifh17]

Il. BASIC EQUATIONS
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a—’:+V(pV)=0, (1) N=71:7M2= 73 71

_ ’ ’ ’ ! ’
n3= st 1t 1= 273— 27y,
the equation of motion for the director,
n L= 3 1. E2= mat =275, )
j

1 h,
J
—+vk&knj=§(&kv1—&jvk)nk-i-)\(b‘”—njn|)nkv|k+ 7,

at In addition, we present the relation of shear viscosity co-

(2 efficients 4, 7., 73 and parameters, y of Eq. (2) with the

. ) Leslie coefficientsa,,as, ... ,as describing an incom-
the Navier-Stokes equation pressible nematic,
Jvj Y=a3— a5y,
P(W"_Uk&kl}j):ako’jky ©) 8 7
a3+ [2%]
Ujk=—p5jk+(r}£)+0'j'k, (4) Cay,—ag’
(n_1 _
o' =3 Lol mn;+ 7 ne— (mjc+ )y ay
jk ~ 2 j i j j m=— (10
— (mdin+ mjdny) — N (njh+neh)) ],
and the equation for the variation of the entrofper unit 72= agt agh=ast a\,
volume), B
3= .
S -
T| = +V(vS) | =2R, (5) Note that some of coefficients,, 7,,73,{1,{> may be
ot negative. The stability condition requires the positiveness of

five combinations composed of these coefficients ¢alj.

In particular, the coefficienty, may be negative, but the
h2 linear combination 2, + 7, must be positive, etc.

ZR:Uj,kvijr — (6) The solution of the linearized equations of r_notion yields
Y the following expressions for the sound velocityand the

The heat conductivity input into acoustic parameteres is negs_ound absorption coefficient in nematics{1,17)

whereR is the dissipative function,

ligible and hence we ignore this process. Here and below we D

sum over repeated indices;is the densityy is the velocity, c= /<,9_> ’ (11)
n is the director,p is the pressuregd;=aldx;, vj = Pl

2 joict o), hJFT(5ik_”jnk)F|‘r|ka Hy= dmmrmk— dF , .

any, and m=JdF1d(dny); F™ is the Frank free energy @ L4 . .\

density for director distortions, ¥ 55 Gt zm*2(4 7,)C080+ nacodh|, (12

FFr=2[Ky,(divn)?+ Kyy(ncurin)2+ Kgd neurin]?], (7)  wherew is the circular frequency anélis the angle between
the direction of the sound wave propagation and the direction
whereK;,K3;,Kzz are the Frank elastic constanksand the  of the average molecular alignmeny.
twist viscosity y are phenomenological coefficientsj’k is In the vicinity of theN-A phase transition point the fluc-
the dissipative part of the stress tensor. The latter is symmetuations of the smectic order parameter are essential. Their
ric in the j andk indices and has uniaxial symmetry in the input into the free energy density in the nematic phase is
nematic state. It contains five independent viscosity coeffif1,18|
cients[17]
FV=3 (AW 2L |V P12+ L, [V, ¥[?). (13

2

T =2mujt ( {1— §771) Oikvn+ L Sininmuim+ NNy ) The coefficientA turnes to zero at thBl-A phase transition

temperatureTy, and as usuah=ay(T—Typ)” with y=13
+ 72(NjNv g+ NENjv ) + 73(N;NNINKY 1) - (8)  using the helium analogy, gr=1 in the mean-field approxi-

mation, andL; andL, are functions weakly dependent on

The coefficientsy; and/; are similar to the shear and bulk temperature. Here we neglect the coupling of the order pa-

viscosities in the ordinary isotropic fluids. The viscositiesrameter to the director fluctuations. The effect of this cou-

{5, M2, andnz are specific for fluids with uniaxial symmetry. pling is the renormalization of the Frank elastic constants

The coefficient, is the second bulk viscosity and it van- K,, andKs3, and it explains their divergence near tNeA

ishes for incompressible nematics. The coefficiemsand  phase transitiof18,19.

73 are two additional shear viscosities. We select this set of We consider the interaction of the sound wave with the

viscosity coefficients due to its convenience for acousticafluctuations of the smectic order parameter. To take into ac-

problems. It is related to the set of viscosity coefficientscount this interaction it is necessary to include an additional

71,75, M5, M4, 75 Used in[17] by the relations equation for the variation of the smectic order parameter to



55 VISCOSITY COEFFICIENTS NEAR THE NEMATIC- ... 5625
the equations of motion of the nematic. This equation may be JEY

constructed on the basis of the system’s symmetry. If each 9k=m=Lﬁk|‘1’|+(|—u—LL)nkn|(9||‘I’|

liquid particle is driven by a homogeneous velocity field with k

its own value of the order parameter, we have Ly
:LJ_ 5k|+ E_ ngny 6’||\If| (19)
dw| ||
o - T Vv V|w|=0. (14 Here “the small additions theoren{20] is used. In our case

it has the formF™+FY=E™+EY for the corresponding
, i choice of external conditions.
If we take into account the relaxation process and the | \ve substitute the equations of motigh), (3), and(5)
nonhomogeneity of the velocity field, we should write on the g Eq.(18) into the right-hand side of Eq17), we can

right-hgnd side of Eq. (14 the relaxation term ¢, m 4 term of the divergence type. Therefore, EXj) can
—bsF”/6¥ and terms describing the interaction betweenyg \yritten as

the smectic order parameter and the velocity field in the

uniaxial media. Therefore, the total equation describing ¢ [ pv? _ ) 2 SEY\2
variation of the order parameter has the form i\ 3 TE|=—divQ+2R— | o+ ?+b s |

9| | SFY (20

—~I—V-V|‘I’|=—b—+Wv|||\I’|+Zn|nkv|k|\I’|

ot S| |
where
—Xnmun Vi, (15 ,
O'jk:O'jk+p5jk_O'l(E)_O'}k\y), (21)
whereX, W, andZ are phenomenological coefficients. Equa-
P g q ff’)=—0kaj|\lf|—annmb’k&m|\P|+annkE‘P

tion (15) describes the dynamics of the smectic order param-
eter in the second-order approximation when the nematic is
fixed as whole. The last three terms are responsible for the +
interaction with the inhomogeneous velocity field. The addi-

tional variable produces additional terms to the stress t.ens%herep=up+TS— E is the pressure. The reactive part of
due to the order parameter interaction with the velocity field, ) ; _ :
These terms may be obtained by the method described i?Jw-‘e stress tensary, ° Is cz_‘;xlcu_lated fon=n,. The expression
[17]. It is based on the energy conservation law in the loca or the energy flux densit® is not presented here since it is

v

JF
W—a,0|)|\lf|(W5jk+annk), (22

too cumbersome and it is not used in the following calcula-

form )
tions.
) ) Thus, the conservation law is valid under the condition
144 _ .
E(TJFE = —divQ, (16) Rt h2+b SFY\2 23
=00 - e
kY Ik y 5|‘If|

whereE is the internal energy density arf@ is the energy ) ) ) o )
flux density. This equation provides us with the ability to This relation estimates the form of the dissipative function

obtain the dissipative functio) and the stress tensor. If we and the form of the reactive past(, 31, of the stress tensor.
differentiate the left-hand side of Eq16) in the explicit ~ The stress tensar; and the tensos,’ should be symmet-

form, we get ric. Therefore, the phenomenological coefficiefitin Eq.
(15 and coefficients,L, in Eqg. (13) should satisfy the
d [ pv2 _Uz r?p+ (9v+ (9P+T(93 relation
al 2 TEEra P atra Ty Ll
S (24)
JEF oEY L,
* ot * at MY
p.S[¥| p.S In this case the reactive parfy’ of the stress tensor has the

symmetric form
where u is the chemical potential. The term
(JEFat), s v Was analyzed ifil7]. It produces the expres- ol ==L (8 Xnn) (Sgmt X (3 ]) (9 W)
sion (4) for the stress tensar;, . We consider the last term
of Eq. (17) in a similar way. The derivativedE"/at),, s + XN FY + (WS +2Znny)
may be presented in the form

v

J|v|

_(7|9|)|‘I’|-

(29

JEY aFY 9| | a|v| - ,
= = 3| — O pr + g 6“7 , (189  Thus, the presence of the additional variab#e| supple-
p,Sin ments the equations of motiofl)—(6) by the additional

equation(15) for the variablg/¥|. The stress tensor has the
where form
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Tik=— POt o + ol + oy (26) x Ha)=A+L,qf+Lqf, (30)

where the additional reactive term is given by E2p)

0 _ : -1 -1

IIl. VISCOSITY COEFFICIENTS Cow=[lotby (@] 3

In the ordered nematics near tiNeA phase transition
point the fluctuating inputs to the viscosity coefficients canand fq ,, is the Fourier component of the stochastic force
be calculated using the equations of motion which were obWith the correlation function
tained in the previous section. To this end we use an ap-
proach based on the description of the dynamics of the smec-
tic order parameter fluctuations by the Langevin equation. 2(2m)*bkgT
This equation includes the stochastic foff¢e,t) noncorre- (faufeo)= vV
lated in space and time.

It is convenient to use the Fourier transform

8(g+q)d(w+w'). (32

Besides the Langevin equatid®9) it is necessary to use

¥ _if drfx At (r -1+t (27)  the continuity equation in the linear form
qrw_\/v 1 ’
© d o p
W(rt)= J‘E f %Wq’we'q'r"“’t, (28) 3pq.0= 5 AVl g0 (33)
q — o0

whereV is the volume. We introduce the Cartesian coordi-
nates §;,X»,x3) With the axisx; directed along the equilib- and the equation of motion
rium directorny,.
The Langevin equation obtained from E@L5) in the
g,w presentation can be written in the form —iwpvj q.0= —10kPg,0 0kt qu(cr,k qoT UJ(E'& 0T Tikge)

S

+ X833~ 93) —Wq —Z8503]v1,q', 0

\Pq,w I[(ql ) (34)

In Eq. (34) the pressurep consists of two partg17]

‘b ax 1(0) ) v (29 P=Pot p™"), wherep, is the thermodynamic pressure and
dp ahet| Tamdhemery p™) = p(9E¥/9p)s—EY is the smectic order parameter fluc-
* tuation contribution. Using Eq.13) we get the expressions
where for p{") anda{y), ,:
= do’ 1] [ax %0)|  _ o ,
Pho = [2 2m 2P\ T ] X 0)+Lolaf (a—a)) +Xd3(A3=a9)] | ¥q'0 ¥a-qr0-0 (3D
S
o) , L o , :
Tik,q, w_T ('1(5 mT X8j30m3) (8 + X6k303)d| (Am—dpm) + §X5135k3{)( (0)+L [aj(g—ay)

+X03(03=a3) T+ [x~H0) + L, (8im+Xd136ms) 0 Am](Wjk+ Z8;384a)) Vg, (36)

q q w—o'
In what follows we omit the Eqs(2) and (5) describing the variations of the director and the entropy, since we are
interested in the coupling between the order parameter fluctuations and the sound wave only.
The Lagevin equation is solved by an iteration procedure in the powers of the veld@ity22. After the second iteration
we have

‘I’q,w=G3,wfq,w ZJ {'[(% a/) +X85(d3—q3) — W —Z8303]

+b U|qu w’quGq g 0—o' f(]*q’,w*w" (37)

ap

&X‘l(O)) P,
— | 74
S
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The first term on the right-hand side describes the fluctuations of the unperturbed system and the second term presents the
interaction of the order parameter fluctuations with the external velocity field. We substitute the s¢8rionto the

equations of motiori34)—(36) and then average over all realizations of the stochastic forces. Usin@Bafter integrating
on frequency we get

ax*(0)

pb p

“Y0)+L,[a/(g—a)

: . [P ) , : dq’ 1
—lwpvj q.= —10; % 5Pq,w+|Qk(0'jk,q,m+O'jk,q,w)+|Qk WKBT >
S

S

X -1 ! !
E{X (0) =L, [ag/(q—a/)

+Xqé(q3—qé)]} Sik— L1 [ak(aj—a]) + X( 0] + 6j30k) (A3~ d3) ] —

—Xqé(qa—Qé)]}+Z[x1(0)+Ll(q’2+XQ’§)]}5;354{ iw+b[x Ha)+x Ha—qg)]} "t

ax~(0)
X{ b p ) b—0av),q0—1Z03v3g.|[X(A")+x(d—d")]—i(q/v) g0+ X0A3034.)X(A")
—i[(Ql_Q|/)U|,q|w+X(Q3_%)vs,q,w]X(q—Q’)]- (39

Here we substitute the summation over wave veatgrby the integration

p *VJ @m?

Also we omit the terms containing the coefficiahtsince it is a small correction to the coefficient

p (8)(_1(0)
x 10\ ap

’

S

diverging asT— Ty . We perform the integration over in Eq.(38) and compare the results obtained with the expression for
the viscous part of the stress tensor:
Tlkqo=H{ 7 (Aot A ) +(£1= 5 70) Saivi + L2( Sik0av s+ 838kativi) + 3 72l §j3(dsvit Ava) + Sia(davj+aju3) ]

+ 1736j36k303V 3} - (39

This comparison allows calculating complex correctidnss, , 71, 17,, 173 to the viscosity coefficients. Details of this proce-
dure are given in the Appendix. The frequency dispersions of the viscosity coefficigifis)— »;(0) and
{i(w)—¢;(0),i=1,2,3j=1,2, are calculated without cutoff parametgs. So we get

ke T?(yo—1)pc? dTya Cp 1 [ax(0)\ 12
RA£1(0)~ Ly(w)]= 2 1;;"7% . ( dgATaT) =0 YD) T eswra=aymean,), @0
1
BkgT?arpc? dTya Cp\7y 1 [dx(0) X(1
R {5(0)— {o(w)]= 87C, (1 dp TaT)rL X(O)( 0T )p[ZGz(ww)Jrg ZGl(ww)Jer(ww))

X/[1

EAZZ(T)[ZGZ((UT(P)_I_E ZGl(ww)Jer(ww)) , (41
BkgT

Re 71(0) = m(w)]= 755+ 3[Gl(w7'z,//) 16Gy(w7,)+ 16G3(w )], (42)

Re 72(0) — 72( @) 1= 2XRd 71(0) — 71(w)], (43)

BkgT Ty, 3 2 X 7,
Re 73(0) — 73(w)]= —5 — 80x Gywry)+| XZ= 75| Galwry) +| 322+ XZ+5X? | GawT,) |, (44)
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BkgT?(yo—1)pc? dTya Co \?[ 1 [ax(0)) 12
Im{ (@)~ [0f1(®)]y-o}= Blw‘%cp a0 1| lxor| o J Gy(wr,)=B,(T)Gylwr,), (45
_ BkgT?arpc? dTya Cp 1 [ax(0)\ ][X X
Im{ng(w)_[w§2(w)]w=O}_ 47Trpr ( - dp T_CYT X(O) JT EGZ(U)TI//)—i_ Z+€ GB((‘)T!//)a (46)
BkgT
Im{w7:(0) [0 7:(0)]o-0} =55 3G @T)) ~4Gs(0Ty) + GylwT))], (47
1
IM{o7,(w) =[@n2(®)]u=0}=2XIM{w 71 (@) —[@71(®)]u=0}, (48)
_ BkgT[X? 1( xz) 1., 7 2)
Im{w7]3(a))—[w773(w)]w=o}—ﬂ_—ri Z)Gz(wrw)-i—g XZ_E G3(cu1'¢,)+1—2 3z +XZ+Z)X GywTy)|, (49
|
where Substituting the Eq(54) into Eq. (53) we get
_ _ L ax "0)\ pTcPaq dTna Cp>((7)(_1(0))
B=(1+X) =y 4n (50 p( p )S_ C, (1_ dp Tar/\” T |
(55
T,=(2bA) 1, (51)
Here we use the thermodynamic identity
G1(X)=X*(V1+x*+9)(V1+X2+3) H(V1+x*+1) 72, -
Co—Cy="1TC e (56)
Go(X) =X THxP+1) S (VIHE+ 1) M2+ 2] 2, P Ty ey
2 Finally from Egs.(55) and(56) we have
_n 2 -1 2 1/2 -1
Gs(x) \/5(\/1+x +1) (V12 + 1)+ 2171, 0|2
(52) P &p s
Ga(X) = V2x2(\1+x2+1) "2, _pTCZ('yo—l)( dTua Cp )2(&)(1(0))2
TG, " dp Tag) T ) o ®D

In these equations the thermodynamic derivative p
(dx " 1(0)/9p)s is expressed via experimentally measured

values. Using the properties of Jacobif#8] we can write In Egs.(40), (41), (45), and(46) we retain the terms with the

nearest to singular behavior near the phase transition point,
(&Xl(O)) only.
Pl ap ]

IV. DISCUSSION
~ar(@x H0)/9T)p+ (Cp/T)(0x ™ H(0)/9p)r

s Let us analyze the frequency and temperature depen-
at—Cy/pTCyc? ' dences of the viscosity coefficient dispersions which are de-
termined by the function&,, ... ,G, of Eq. (52). For low
(53 : : \
freq_uenC|esz¢,< 1, these functions have the asymptotic be-
whereC, andC,, are the regular parts of the heat capacitieshavior
per unit volume,

Gi(wTy)~ 3 (w7,)?
1(av)
aAT=\| ==
LAKAN GylwTy)~ 5 (w7y)?,

is the coefficient of the bulk expansion. The value Ga(wry)~ L (wr))? (58)
(ax %(0)/dp); may be expressed through the derivative S5l e Al
with respect to the temperature since the functiont(0)

_ 2
depends on the differend@ — Tya(p)]. Thus we have Calwry)~(w7y)"

ax~%(0) ax~1(0)\ dTya Note th'at all d|sger3|on parts of the complex viscosities are
=— (54)  proportional tow*.
P g JT |, dp For high frequenciespr,>1, we have
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Gi(wTy)~1, c(w,0)—c=wc’lma(w, ). (64
Gy(wT,)~1, (59 Equationg63) and(64) show that in the vicinity of the phase
transition point the complex correctiofi; describes the
w7y sound damping and the velocity dispersion whereas the cor-
Ga(wTy)~ o rection ¢, describes the anisotropy of acoustic parameters.

If 73#0, then Eqs(63) and(64) predict the deviation of
312 the angle dependences of the acoustic properties from the
Galwry)~V2(wr,)* form A?+ BcoFs)za. This deviation was obpser[\)/ed in Refs.

Equation (59) shows that fore—o the functionsG, and  [8,10].
G, approach constant levels whereas the functigsand Note that the contributions to the shear viscosjtyand,
G, tend to infinity asw®? and w®?, respectively. Hence the hence, to the Leslie coefficients; and ag are proportional
inputs  REZ(0)—¢i(w)],i=1,2, and IMw{(w) 1O
—[wli(w)],=0} are finite and may be calculated for all fre-

2
guencies. The remaining contributions depend on the func- X = ﬂ_lz dl 1
tions G3(wr,) and G4(w7,) and they are divergent for L, r_f ’

oT,—. These divergences are reduced by introducing the o
cutoff parameteq,,. It means that Eqg42)—(44) and(46)—  where rH:\/_L” A, Therefpre these coefficients depend on
(49) are suitable for<r?g2/r, only. Using typical liquid the correlation length's difference only.

crystal values r, ~2X10 8[(T—Tya)/Tnal % cm, Equations(40)—(49) are suitable for calculating the criti-
Ty~ 107 9[(T—Tna)/ Taal 1 s, andg,,~2x 10°cm™* [23— cal corrections to all viscosity coefficients. Therefore there is
26] we obtain the conditiom<10® s 1. a possibility to calculate the values

The dispersion inputs into the viscositie§(w) and B _
Ref,(w) have the following asymptotic behavior for high Ay(w,0)= *(w=0.) agw’e), 65)
frquencies 7,>1): [w/(27)]
Re £1(0)— =2A, (T)[1—4y2 —32), 60 c(w,0)—c(w=0,0

€41(0)~ a(@)]=2A, (M[1-4V2(w7,) %7, (60) Ay, 8)= S0 C(w ) .

Re £2(0) — {a(w)]
The latter may be measured in acoustical experiments. The

X 1 total expressions fah; andA, may be easily obtained from
27+ ﬁ (07y) ' (61) Egs. (63), (64), and (40)—(49). They are not presented here
due to their awkwardness.
For low frequencesp7,<1, it is possible to describe the
character of temperature, frequency, and angular depen-

X
Z+2 -

=A,(T)|Z+7

IM{w¢1(0) ~[0f1(®)]e=0} =B (M1~ V2(w7,) "],

(62 dences ofA; andA, in a rather simple form. For this pur-
; Nt in the most divergent with- Tya terms only
For the thermodynamic derivativ@x(0)/dT), the fol- ~ POSE We retain t L WILR= T na
lowing relation is valid in the vicinity of the phase transition " the expressions for complex viscositigt0)~(49). Thus
point: we have
1 (ax(0) 1 Ay=w’[Agr 7724 B 7 (4T MT i c0g
x<0>( aT ), T T +Cyr (336 cod ), (67)
Therefore the coefficients, and especially; increase more Ay=w A7~ 472"+ Bor” CTY=4cog 9
rapidly than the shear viscosity coefficient§if>Ty,. Note (243160, ) god
that the expression faf; agrees with the bulk viscosity co- +Cor 172"+ cos'd], (68)

efficient obtalne_d "{5’12]'. . L where 7=(T—Tna)/Tna, @and A, ,B;, and C;,i=1,2, are
The absorption coefficient complex correction is ex- . A ;
X . . L constants in the aprroximation used. Here we take into ac-
pressed via the complex inputs to the viscosities in the form .
count that the correlation lengths have the temperature de-
_ w2 4 pendences | =rq 7 "I,r, =rqo, 7 ", and for small~ we
a(w, ) :ﬁ{ {1(w)+ 3 N(w)+2[{(w)+ y(w)] omit the unit in the expression for
P X=(ro|/ro,) 7 217" =1 sincey;>v, [2,4,11.
Equationg67) and(68) show that the results of acoustical
X €0S 0+ 775(w)cos'6 | . (63 experiments are sensitive to the values of the critical indices
v andv, . The coefficientsA; ,B;, andC;,i=1,2, may be
Therefore the fluctuation corrections to the absorption coefcalculated from the angular dependences of the sound attenu-

ficient Aa(w,f) and to the sound velocity dispersion ation and velocity dispersion. It gives information about the
c(w,d) — ¢ have the form behavior of the viscosity coefficients neldrA transitions.

The angular variation oA ; andA, may be quite compli-
Aa(w,8)=Rex(w,8), cated if the signs of th8; andC; coefficients are opposite.
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Namely, such behavior witB,<0 andC,>0 was observed 7 j':qj’ , ’{;j:vj . j=1,2,
in [8] for the sound velocity dispersion.
Besides acoustic methods, it is possible to use experi-

ments on the reflection of the shear w42&] to measure the ~/_ Maivn ~ _ [Maivw
critical behavior of the shear viscosity coefficients sepa- 3= VITX0Gs, vs=vVItXvs. (A1)
rately.

This integral term in Eq(38) presents the contribution of the
smectic order parameter fluctuations to the stress tensor for
In the integral in Eq(39) we change the variableg,vto  which we use the notatioig,o, 5 ,,- The integral is trans-

q’,V with components formed to the form

APPENDIX

ax *(0)
dp

Po

) -x Y0)+L,q /(@1 I,)}ﬁjk_LL{a (@—0)) + (V1+X=1)[ 839 3(q;

s

o~ : dg’ (1
i9kT i 5. = 1AkBKaT 23l 2

G 3(Gs—q ) | +Z[x 1(0)

Vi+X-1
ZT—l

=~ = I~ =~ X — N (N ~ !/
—q )+ 630 3(qk—qk)]}—(§ x 1H0)-L,q |(q|—q|)—2Li(
X bp

bp
© 1+X o

w

X HO)|
ap Qv
S

, .y - ax X0
+L.q 2]]5135k3>{—iw+b[x11(q 2)+x11((q’—t1)2)]}1(( Xap( ))

oy 'asvs][ma )+ x (@71 V@ D -i @) —'al’)’J'xl((a—a')Z)), (A2)

where the notation
x.(@2)=(A+L, ) (A3)
is used. If we retain in EqA2) the terms of the order aj? we get

dx*(0)
ap

o, : dg’ (1
|QKUjk,a,w:|qkﬂkBTf(zT)3 >

p S+ L. [0 kq |+ (VI+X—1)(830 30 |+ 830 30 1]

) -x 1@'?

S

Vv1+X-1

X . ~,
X '@ 2>+2LL(2T—1)0| 5

2

42

The integral terms in EqA4) may be presented in the form

+Zx M@ ’2)] ajaskg)[—iwubxf(a 2]t

Lz
HTEX

S

X bp
1+ X w

ax~1(0)
ap

Ix M0\ -
ap qiu
S

53'53] —igu+2iL,q /9 (w0 | - (A4)

N/

dg’ _ — 1 dq’ _.,, .,
f %q $1(@q 2)=§f %q %f(q 2,

!

@ i, 1 dq’ _ .,
J (277)3q 3d ;f(q 2):§631JWC‘ 2f(q 2, (A5)
da’~/~r~/~/~~ ~ ! 1~~ ~~ ~ ~ da,"" ~ !
f (277.)3q x4 jq md |qu|f(q 2)=1—5(Q|v|5jk+qjvk+quj)J' (27)3(,] 4f(q 2)_

Using the presentatiofA5) in Eq. (A4) we can see that the value of tﬁ‘?k,a,w tensor depends on the vector components of
q,V in a similar way as the viscous part of the stress teﬁ@gaw in Eq. (8) depends on the vector componentsjof. Then
we replace the variablégV by g,v using Eq.(Al). Thus Eq.(A4) transforms into the form

Tl q.o=1[ 71(djvit Q) + (41— 5 71) S+ §<2a)f‘51'k(13031L 5(2b)5j35k3Q|U|+% 72[ 6j3(d3vk+ v a)
+ 63(d3vj+ djvs) |+ 173030303V 3], (A6)

where
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2pkeTLI [ dg’  q“xP@?
MTTIs ) @2 [—iw+2bx  Hq D)

(g 2 )_ ikaBsz(aX_l(O))zf dg’ x@?d
L 3"m © ap ) @M [—iw+2by; XqD)]
ax 10 X dg’ 2 XL dqg’ '2,2(q'2
f(za)=—ﬂkBTP x ~(0) 7.2 q I x.(9 _)1 S L q I q Xl(q—1) —|
ap . 2]) 2m)° [—iw+2bx Y q?] 3 J 2m)°[-iw+2bx (q?]
o 2DBKsTp [ 9x"H0) x| [ do’ 1 _XLLJ d’  a’%@? |
2 o ap 2] ) @mP[—iw+2bx %q®] 3 J 2™ [—iw+2by1(q'})]
S
Np=2Xn1,

2 dq’ 1 4 1 dg’ x1(aq'?)
=BkaT| | 222+ =XZ+ L X2 f —+ =AX| Z—-=X f -
75~ Pl . (2m)° [—iw+2bx; (q?] 3 107 ] ) 2m)° [—iw+2bx; %q'))]

2 dq’ PACE
+ZA2x2 y — - (A7)
5 (2m)° [—iw+2byx;*(q ?)]

Here we leave the terms closest to begin singular.

Note that the coefficientg’® and ¢ have equal real parts B =Re/{® . It is a fluctuation correction to the bulk
viscosity coefficient £,. For the imaginary parts of /&2 and ¢ the following identity is valid:
Im[wg(za)—(wg(za))wzo]=Im[wg“(zb)—(a)g(zb))wzo]. This expression presents a part of the fluctuation contribution into the
sound velocity dispersion. In EqeA7) the expressions for the coefficienig, .Y, 7, 75 contain integrals depending on the
cutoff parameteq,,, while the most important variables

R —({jw=0], IMolj—(wlj)e=0l, =12,

R 7j—(7j)w=0)s IMon—(0n),=0], =123,

may be calculated without it. Performing the integration we get E3—(49).
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