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Viscosity coefficients near the nematic–smectic-A phase transition

V. P. Romanov and S. V. Ul’yanov
Department of Physics, St. Petersburg State University, Petrodvorets, St. Petersburg 198904, Russia

and Department of Higher Mathematics, Institute of Trade and Economics, St. Petersburg 194018, Russia
~Received 26 September 1995; revised manuscript received 14 January 1997!

The equations of motion of nematic liquid crystals are complemented by the nonlinear Langevin equation for
the smectic order parameter fluctuations. The nonlinear terms of this equation describe coupling of the order
parameter to velocity and density. An expression for the reactive part of the stress tensor is obtained. The
complex fluctuation inputs into viscosity coefficients are calculated in the frame of the Landau–de Gennes
model near the nematic–smectic-A (N-A) phase transition. The sound velocity dispersion and the attenuation
dependences on temperature, frequency, and the direction of the sound wave propagation are calculated. The
results obtained are sensitive to values of two critical exponents for correlation lengths.
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I. INTRODUCTION

Investigation of the nematic–smectic-A (N-A) phase
transition has attached considerable interest for a long t
@1–4# and various theoretical models for this transition ha
been analyzed@2#. The emphasis is on the investigation
the nature of theN-A transition, the construction of relevan
models, and the determination of critical exponents for t
correlation lengths. The basic experimental methods app
in this system are calorimetrics and light scattering. Th
methods enable one to study the equilibrium properties
N-A transitions in detail. For study of the kinetic properti
acoustic measurements are most effective since they
information on the mechanism of the phase transition.
periments on the propagation of longitudinal sound wa
have shown an anomalous increase of the attenuation
anisotropy of sound velocity dispersion@3,5–10#. The exis-
tence of two correlation lengths@2,4,11# results in compli-
cate dependences of the viscosity coefficients on tempera
and frequency and this in turn produces the complicated
havior of the acoustic parameters.

Unfortunately, the acoustic properties are sensitive to
type of liquid crystal. Therefore near theN-A phase transi-
tion some systems show angular dependences@5,8,10#
whereas other systems do not exhibit this behavior@6,7,9#.

The complicated point in developing the theory of aco
tic properties forN-A transition is in the necessity of ac
counting for various contributions to the critical sound b
havior. In particular, Kiry and Martinoty@5# and Swift and
Mulvaney @12# have considered in detail the input of th
smectic order parameter fluctuations into the bulk visco
coefficient. They calculated the temperature and freque
dependences of this contribution which causes an isotr
anomalous attenuation of sound and also gives an inpu
the speed of sound near the phase transition point.

To describe the anisotropy of the acoustic properties
necessary to calculate the contributions to other visco
coefficients. McMillan@13# and Jahnig and Brochard@14#
studied the coupling of the smectic order parameter fluc
tions to the director near the phase transition point. Th
calculated the fluctuation input into thea1 ,a2 Leslie coeffi-
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cients. Using the NAC model Swift and co-workers@15,16#
considered the coupling of the order parameter fluctuati
to the velocity. They calculated the complex input into t
a1 Leslie coefficient and analyzed its behavior near ph
transition point. It was found that in acoustic problems t
bulk viscosity dominates and the coupling of the smec
order parameter fluctuation to the velocity is more import
compared with the coupling to the director. Actually, fiv
complex viscosity coefficients determine the acoustic pr
erties of the system. The sound velocity dispersion is de
mined by the imaginary parts of these coefficients and
sound attenuation is a linear function of the real parts.

The aim of this work is to calculate the frequency disp
sion of all five viscosity coefficients caused by the intera
tion of the sound wave with the smectic order parame
fluctuations. The viscosity coefficients are contained in
dissipative part of the stress tensor. To calculate the fluc
tion corrections to the stress tensor in the anisotropic unia
medium we add the nonlinear Langevin equation describ
the variation of the smectic order parameter. By solution
the system equations of motion by iteration after statisti
averaging we get the fluctuation contribution to the str
tensor. This input satisfies the symmetry conditions and p
vides the fluctuation corrections to all viscosity coefficien
Finally, the nematic liquid crystal acoustical properties a
calculated. It turns out that they are strongly dependent
two critical exponents of the correlation lengths. Final resu
admit comparison of the theory and the experiment.

The article is organized as follows. In Sec. II we constru
a set of equations of motion for nematic liquid crystals whi
include the equation for an additional scalar variable. Th
are used in Sec. III for the calculation of fluctuation inpu
into all viscosity coefficients. Sound damping and veloc
dispersion are derived. We discuss the obtained result
Sec. IV.

II. BASIC EQUATIONS

The set of hydrodynamic equations for nematic liqu
crystals includes the continuity equation@1,17#
5623 © 1997 The American Physical Society
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]r

]t
1¹~rv!50, ~1!

the equation of motion for the director,

]nj
]t

1vk]knj5
1

2
~]kv j2] jvk!nk1l~d j l2njnl !nkv lk1

hj
g
,

~2!

the Navier-Stokes equation

rS ]v j
]t

1vk]kv j D5]ks jk , ~3!

s jk52pd jk1s jk
~n!1s jk8 , ~4!

s jk
~n!5 1

2 @] l@pklnj1p j l nk2~p jk1pk j!nl #

2~pkl] jnl1p j l ]knl !2l~njhk1nkhj !#,

and the equation for the variation of the entropy~per unit
volume!,

TS ]S

]t
1¹~vS! D52R, ~5!

whereR is the dissipative function,

2R5s jk8 v jk1
h2

g
. ~6!

The heat conductivity input into acoustic parameteres is n
ligible and hence we ignore this process. Here and below
sum over repeated indices;r is the density,v is the velocity,
n is the director, p is the pressure,] j5]/]xj , v jk5
1
2(] jvk1]kv j ), hj5(d jk2njnk)Hk , Hk5]mpmk2]FFr/
]nk , andpmk5]FFr/](]mnk); F

Fr is the Frank free energy
density for director distortions,

FFr5 1
2 @K11~divn!21K22~ncurln!21K33@ncurln#2#, ~7!

whereK11,K22,K33 are the Frank elastic constants,l and the
twist viscosityg are phenomenological coefficients,s jk8 is
the dissipative part of the stress tensor. The latter is symm
ric in the j andk indices and has uniaxial symmetry in th
nematic state. It contains five independent viscosity coe
cients@17#

s jk8 52h1v jk1S z12
2

3
h1D d jkv l l1z2~d jknlnmv lm1njnkv l l !

1h2~njnlvkl1nknlv j l !1h3~njnknlnmv lm!. ~8!

The coefficientsh1 andz1 are similar to the shear and bu
viscosities in the ordinary isotropic fluids. The viscositi
z2, h2, andh3 are specific for fluids with uniaxial symmetry
The coefficientz2 is the second bulk viscosity and it van
ishes for incompressible nematics. The coefficientsh2 and
h3 are two additional shear viscosities. We select this se
viscosity coefficients due to its convenience for acoust
problems. It is related to the set of viscosity coefficien
h18 ,h28 ,h38 ,h48 ,h58 used in@17# by the relations
g-
e

t-

-

of
l
s

h15h18 ,h25h3822h18 ,

h35h581h181h2822h3822h48 ,

z15h282 1
3 h18 ,z25h481h1822h28 . ~9!

In addition, we present the relation of shear viscosity c
efficientsh1 ,h2 ,h3 and parametersl, g of Eq. ~2! with the
Leslie coefficientsa1 ,a2 , . . . ,a6, describing an incom-
pressible nematic,

g5a32a2 ,

l5
a31a2

a22a3
,

h15
a4

2
, ~10!

h25a61a3l5a51a2l,

h35a1 .

Note that some of coefficientsh1 ,h2 ,h3 ,z1 ,z2 may be
negative. The stability condition requires the positiveness
five combinations composed of these coefficients only@17#.
In particular, the coefficienth2 may be negative, but the
linear combination 2h11h2 must be positive, etc.

The solution of the linearized equations of motion yiel
the following expressions for the sound velocityc and the
sound absorption coefficienta in nematics@1,17#:

c5AS ]p

]r D
s

, ~11!

a5
v2

2rc3 Fz11 4

3
h112~z21h2!cos

2u1h3cos
4uG , ~12!

wherev is the circular frequency andu is the angle between
the direction of the sound wave propagation and the direc
of the average molecular alignmentn0.

In the vicinity of theN-A phase transition point the fluc
tuations of the smectic order parameter are essential. T
input into the free energy density in the nematic phase
@1,18#

FC5 1
2 ~AuCu21L iu¹ iCu21L'u¹'Cu2!. ~13!

The coefficientA turnes to zero at theN-A phase transition
temperatureTNA and as usualA5a0(T2TNA)

g with g5 4
3

using the helium analogy, org51 in the mean-field approxi-
mation, andL i and L' are functions weakly dependent o
temperature. Here we neglect the coupling of the order
rameter to the director fluctuations. The effect of this co
pling is the renormalization of the Frank elastic consta
K22 andK33, and it explains their divergence near theN-A
phase transition@18,19#.

We consider the interaction of the sound wave with t
fluctuations of the smectic order parameter. To take into
count this interaction it is necessary to include an additio
equation for the variation of the smectic order paramete
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the equations of motion of the nematic. This equation may
constructed on the basis of the system’s symmetry. If e
liquid particle is driven by a homogeneous velocity field w
its own value of the order parameter, we have

duCu
dt

5
]uCu

]t
1v•¹uCu50. ~14!

If we take into account the relaxation process and
nonhomogeneity of the velocity field, we should write on t
right-hand side of Eq. ~14! the relaxation term
2bdFC/dC and terms describing the interaction betwe
the smectic order parameter and the velocity field in
uniaxial media. Therefore, the total equation describ
variation of the order parameter has the form

]uCu
]t

1v•¹uCu52b
dFC

duCu
1Wv l l uCu1Znlnkv lkuCu

2Xnlv lnk¹kuCu, ~15!

whereX,W, andZ are phenomenological coefficients. Equ
tion ~15! describes the dynamics of the smectic order para
eter in the second-order approximation when the nemat
fixed as whole. The last three terms are responsible for
interaction with the inhomogeneous velocity field. The ad
tional variable produces additional terms to the stress te
due to the order parameter interaction with the velocity fie
These terms may be obtained by the method describe
@17#. It is based on the energy conservation law in the lo
form

]

]t S rv2

2
1ED52divQ, ~16!

whereE is the internal energy density andQ is the energy
flux density. This equation provides us with the ability
obtain the dissipative function~6! and the stress tensor. If w
differentiate the left-hand side of Eq.~16! in the explicit
form, we get

]

]t S rv2

2
1ED5

v2

2

]r

]t
1rv•

]v

]t
1m

]r

]t
1T

]S

]t

1S ]EFr

]t D
r,S,uCu

1S ]EC

]t D
r,S,n

, ~17!

where m is the chemical potential. The term
(]EFr/]t)r,S,uCu was analyzed in@17#. It produces the expres
sion ~4! for the stress tensors jk . We consider the last term
of Eq. ~17! in a similar way. The derivative (]EC/]t)r,S,n
may be presented in the form

S ]EC

]t D
r,S,n

5S ]FC

]uCu
2]kukD ]uCu

]t
1]kS uk

]uCu
]t D , ~18!

where
e
h

e

e
g

-
-
is
e
-
or
.
in
l

uk5
]EC

]~]kuCu!
5L']kuCu1~L i2L'!nknl] l uCu

5L'Fdkl1S L i

L'
21Dnknl G] l uCu. ~19!

Here ‘‘the small additions theorem’’@20# is used. In our case
it has the formFFr1FC5EFr1EC for the corresponding
choice of external conditions.

If we substitute the equations of motion~1!, ~3!, and ~5!
and Eq.~18! into the right-hand side of Eq.~17!, we can
form a term of the divergence type. Therefore, Eq.~17! can
be written as

]

]t S rv2

2
1ED52divQ12R2Fs lk8 v lk1

h2

g
1bS dFC

duCu D
2G ,
~20!

where

s jk8 5s jk1pd jk2s jk
~n!2s jk

~C! , ~21!

s jk
~C!52uk] j uCu2Xnjnmuk]muCu1XnjnkE

C

1S ]FC

]uCu
2] lu l D uCu~Wd jk1Znjnk!, ~22!

wherep5mr1TS2E is the pressure. The reactive part
the stress tensors jk

(C) is calculated forn5n0. The expression
for the energy flux densityQ is not presented here since it
too cumbersome and it is not used in the following calcu
tions.

Thus, the conservation law is valid under the condition

2R5s lk8 v lk1
h2

g
1bS dFC

duCu D
2

. ~23!

This relation estimates the form of the dissipative functi
and the form of the reactive parts jk

(C) of the stress tensor
The stress tensors jk and the tensors jk

(C) should be symmet-
ric. Therefore, the phenomenological coefficientX in Eq.
~15! and coefficientsL i ,L' in Eq. ~13! should satisfy the
relation

X5
L i2L'

L'

. ~24!

In this case the reactive parts jk
(C) of the stress tensor has th

symmetric form

s jk
~C!52L'~d j l1Xnjnl !~dkm1Xnknm!~] l uCu!~]muCu!

1XnjnkF
C1~Wd jk1Znjnk!S ]FC

]uCu
2] lu l D uCu.

~25!

Thus, the presence of the additional variableuCu supple-
ments the equations of motion~1!–~6! by the additional
equation~15! for the variableuCu. The stress tensor has th
form
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s jk52pd jk1s jk
~n!1s jk

~C!1s jk8 ~26!

where the additional reactive term is given by Eq.~25!

III. VISCOSITY COEFFICIENTS

In the ordered nematics near theN-A phase transition
point the fluctuating inputs to the viscosity coefficients c
be calculated using the equations of motion which were
tained in the previous section. To this end we use an
proach based on the description of the dynamics of the sm
tic order parameter fluctuations by the Langevin equati
This equation includes the stochastic forcef (r ,t) noncorre-
lated in space and time.

It is convenient to use the Fourier transform

Cq,v5
1

AV
E drE

2`

`

dtC~r ,t !e2 iq•r1 ivt, ~27!

C~r ,t !5
1

AV(
q
E

2`

` dv

2p
Cq,ve

iq•r2 ivt, ~28!

whereV is the volume. We introduce the Cartesian coor
nates (x1 ,x2 ,x3) with the axisx3 directed along the equilib
rium directorn0.

The Langevin equation obtained from Eq.~15! in the
q,v presentation can be written in the form

Cq,v5Gq,v
0 H f q,v2

1

AV(
q
E

2`

` dv8

2p F i @~ql2ql8!

1Xd l3~q32q38!2Wql82Zd l3q38#v l ,q8,v8

1bS ]x21~0!

]r D
s

rq8,v8GCq2q8,v2v8J , ~29!

where
-
p-
c-
.

-

x21~q!5A1L'q'
21L iqi

2 , ~30!

Gq,v
0 5@2 iv1bx21~q!#21, ~31!

and f q,v is the Fourier component of the stochastic for
with the correlation function

^ f q,v f q8,v8&5
2~2p!4bkBT

V
d~q1q8!d~v1v8!. ~32!

Besides the Langevin equation~29! it is necessary to use
the continuity equation in the linear form

drq,v5
r

v
qlv l ,q,v ~33!

and the equation of motion

2 ivrv j ,q,v52 iqkpq,vd jk1 iqk~s jk,q,v
~n! 1s jk,q,v

~C! 1s jk,q,v8 !.

~34!

In Eq. ~34! the pressurep consists of two parts@17#
p5p01p(C), wherep0 is the thermodynamic pressure an
p(C)5r(]EC/]r)s2EC is the smectic order parameter flu
tuation contribution. Using Eq.~13! we get the expression
for pq,v

(C) ands jk,q,v
(C) :
are
pq,v
~C!5

1

AV(
q8

E
2`

` dv8

2p

1

2 FrS ]x21~0!

]r D
s

2x21~0!1L'[ql8~ql2ql8!1Xq38~q32q38!] GCq8,v8Cq2q8,v2v8, ~35!

s jk,q,v
~C! 5

1

AV(
q8

E
2`

` dv8

2p
„L'~d jm1Xd j3dm3!~dkl1Xdk3d l3!ql8~qm2qm8 !1

1

2
Xd j3dk3$x

21~0!1L'@ql8~ql2ql8!

1Xq38~q32q38!#%1@x21~0!1L'~d lm1Xd l3dm3!ql8qm8 #~Wd jk1Zd j3dk3!…Cq8,v8Cq2q8,v2v8. ~36!

In what follows we omit the Eqs.~2! and ~5! describing the variations of the director and the entropy, since we
interested in the coupling between the order parameter fluctuations and the sound wave only.

The Lagevin equation is solved by an iteration procedure in the powers of the velocityv @21,22#. After the second iteration
we have

Cq,v5Gq,v
0 f q,v2

1

AV(
q8

E
2`

` dv8

2p F i @~ql2ql8!1Xd l3~q32q38!2Wql82Zd l3q38#

1bS ]x21~0!

]r D
s

r

v8
ql8Gv l ,q8,v8Gq,v

0 Gq2q8,v2v8
0 f q2q8,v2v8. ~37!
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The first term on the right-hand side describes the fluctuations of the unperturbed system and the second term pre
interaction of the order parameter fluctuations with the external velocity field. We substitute the solution~37! into the
equations of motion~34!–~36! and then average over all realizations of the stochastic forces. Using Eq.~32! after integrating
on frequency we get

2 ivrv j ,q,v52 iq j S ]p

]r D
s

drq,v1 iqk~s jk,q,v
~n! 1s jk,q,v8 !1 iqkE dq8

~2p!3
kBTH 12 FrbS ]x21~0!

]r D
s

2x21~0!1L'@ql8~ql2ql8!

1Xq38~q32q38!#Gd jk2L'@qk8~qj2qj8!1X~dk3qj81d j3qk8!~q32q38!#2FX2 $x21~0!2L'@ql8~ql2ql8!

2Xq38~q32q38!#%1Z@x21~0!1L'~q821Xq83
2!#Gd j3dk3J $2 iv1b@x21~q8!1x21~q2q8!#%21

3H FbS ]x21~0!

]r D
s

b
r

v
qlv l ,q,v2 iZq3v3,q,vG @x~q8!1x~q2q8!#2 i ~ql8v l ,q,v1Xq38v3,q,v!x~q8!

2 i @~ql2ql8!v l ,q,v1X~q32q38!v3,q,v#x~q2q8!J . ~38!

Here we substitute the summation over wave vectorsq8 by the integration

(
q8
→VE dq8

~2p!3
.

Also we omit the terms containing the coefficientW since it is a small correction to the coefficient

r

x21~0! S ]x21~0!

]r D
s

,

diverging asT→TNA . We perform the integration overq8 in Eq. ~38! and compare the results obtained with the expression
the viscous part of the stress tensor:

s jk,q,v8 5 i $h1~qjvk1qkv j !1~z12
2
3 h1!d jkqlv l1z2~d jkq3v31d j3dk3qlv l !1 1

2 h2@d j3~q3vk1qkv3!1dk3~q3v j1qjv3!#

1h3d j3dk3q3v3%. ~39!

This comparison allows calculating complex correctionsz1 ,z2 ,h1 ,h2 ,h3 to the viscosity coefficients. Details of this proc
dure are given in the Appendix. The frequency dispersions of the viscosity coefficientsh i(v)2h i(0) and
z j (v)2z j (0),i51,2,3,j51,2, are calculated without cutoff parameterqm . So we get

Re@z1~0!2z1~v!#5
bkBT

2~g021!rc2

128pCp
S 12

dTNA
dp

Cp

TaT
D 2tc

r'
3 F 1

x~0! S ]x~0!

]T D
p

G2G1~vtc![Az1
~T!G1~vtc!, ~40!

Re@z2~0!2z2~v!#5
bkBT

2aTrc
2

8pCp
S 12

dTNA
dp

Cp

TaT
D tc

r'
3

1

x~0! S ]x~0!

]T D
p
FZG2~vtc!1

X

6 S 14G1~vtc!1G2~vtc! D G
[Az2

~T!FZG2~vtc!1
X

6 S 14G1~vtc!1G2~vtc! D G , ~41!

Re@h1~0!2h1~v!#5
bkBT

480p

tc

r'
3 @G1~vtc!216G2~vtc!116G3~vtc!#, ~42!

Re@h2~0!2h2~v!#52XRe@h1~0!2h1~v!#, ~43!

Re@h3~0!2h3~v!#5
bkBT

6p

tc

r'
3 F 380X2G1~vtc!1SXZ2

X2

10DG2~vtc!1S 3Z21XZ1
7

20
X2DG3~vtc!G , ~44!
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Im$vz1~v!2@vz1~v!#v50%5
bkBT

2~g021!rc2

16pr'
3Cp

S 12
dTNA
dp

Cp

TaT
D 2F 1

x~0! S ]x~0!

]T D
p

G2G2~vtc![Bz1
~T!G2~vtc!, ~45!

Im$vz2~v!2@vz2~v!#v50%5
bkBT

2aTrc
2

4pr'
3Cp

S 12
dTNA
dp

Cp

TaT
D F 1

x~0! S ]x~0!

]T D
p

GFX6G2~vtc!1S Z1
X

6 DG3~vtc!G , ~46!

Im$vh1~v!2@vh1~v!#v50%5
bkBT

60pr'
3 @G2~vtc!24G3~vtc!1G4~vtc!#, ~47!

Im$vh2~v!2@vh2~v!#v50%52XIm$vh1~v!2@vh1~v!#v50%, ~48!

Im$vh3~v!2@vh3~v!#v50%5
bkBT

pr'
3 FX2

20
G2~vtc!1

1

3 SXZ2
X2

10DG3~vtc!1
1

12S 3Z21XZ1
7

20
X2DG4~vtc!G , ~49!
iv
ed

ie

ue
ve

oint,

en-
de-

e-

are
where

b5~11X!21/2, r'5AL'

A
, ~50!

tc5~2bA!21, ~51!

G1~x!5x2~A11x219!~A11x213!21~A11x211!22,

G2~x!5x2~A11x211!23/2@~A11x211!1/21A2#21,

G3~x!5
x2

A2
~A11x211!21@~A11x211!1/21A2#21,

~52!

G4~x!5A2x2~A11x211!21/2.

In these equations the thermodynamic derivat
„]x21(0)/]r…s is expressed via experimentally measur
values. Using the properties of Jacobians@20# we can write

rS ]x21~0!

]r D
s

52
aT„]x21~0!/]T…p1~Cp /T!„]x21~0!/]p…T

aT
22Cp

2/rTCVc
2 ,

~53!

whereCp andCV are the regular parts of the heat capacit
per unit volume,

aT5
1

V S ]V

]TD
p

is the coefficient of the bulk expansion. The val
„]x21(0)/]p…T may be expressed through the derivati
with respect to the temperature since the functionx21(0)
depends on the difference@T2TNA(p)#. Thus we have

S ]x21~0!

]p D
T

52S ]x21~0!

]T D
p

dTNA
dp

. ~54!
e

s

Substituting the Eq.~54! into Eq. ~53! we get

rS ]x21~0!

]r D
s

5
rTc2aT

Cp
S 12

dTNA
dp

Cp

TaT
D S ]x21~0!

]T D
p

.

~55!

Here we use the thermodynamic identity

Cp2CV5
rTaT

2c2

g0
, g05

Cp

CV
. ~56!

Finally from Eqs.~55! and ~56! we have

r2S ]x21~0!

]r D
s

2

5
rTc2~g021!

Cp
S 12

dTNA
dp

Cp

TaT
D 2S ]x21~0!

]T D
p

2

. ~57!

In Eqs.~40!, ~41!, ~45!, and~46! we retain the terms with the
nearest to singular behavior near the phase transition p
only.

IV. DISCUSSION

Let us analyze the frequency and temperature dep
dences of the viscosity coefficient dispersions which are
termined by the functionsG1 , . . . ,G4 of Eq. ~52!. For low
frequenciesvtc!1, these functions have the asymptotic b
havior

G1~vtc!; 5
8 ~vtc!2,

G2~vtc!; 1
8 ~vtc!2,

G3~vtc!; 1
8 ~vtc!2, ~58!

G4~vtc!;~vtc!2.

Note that all dispersion parts of the complex viscosities
proportional tov2.

For high frequencies,vtc@1, we have
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G1~vtc!;1,

G2~vtc!;1, ~59!

G3~vtc!;Avtc

2
,

G4~vtc!;A2~vtc!3/2.

Equation ~59! shows that forv→` the functionsG1 and
G2 approach constant levels whereas the functionsG3 and
G4 tend to infinity asv1/2 andv3/2, respectively. Hence the
inputs Re@z i(0)2z i(v)#,i51,2, and Im$vz1(v)
2@vz1(v)#v50% are finite and may be calculated for all fre
quencies. The remaining contributions depend on the fu
tions G3(vtc) and G4(vtc) and they are divergent fo
vtc→`. These divergences are reduced by introducing
cutoff parameterqm . It means that Eqs.~42!–~44! and~46!–
~49! are suitable forv!r'

2qm
2 /tc only. Using typical liquid

crystal values r';231028@(T2TNA)/TNA#20.5 cm,
tc;1029@(T2TNA)/TNA#21 s, andqm;23107cm21 @23–
26# we obtain the conditionv!108 s21.

The dispersion inputs into the viscositiesz1(v) and
Rez2(v) have the following asymptotic behavior for hig
frquencies (vtc@1):

Re@z1~0!2z1~v!#52Az1
~T!@124A2~vtc!23/2#, ~60!

Re@z2~0!2z2~v!#

5Az2
~T!FZ1

X

4
2S A271

X

3A2D ~vtc!21/2G , ~61!

Im$vz1~v!2@vz1~v!#v50%5Bz1
~T!@12A2~vtc!21/2#.

~62!

For the thermodynamic derivative„]x(0)/]T…p the fol-
lowing relation is valid in the vicinity of the phase transitio
point:

1

x~0! S ]x~0!

]T D
p

;
1

T2TNA
.

Therefore the coefficientsz2 and especiallyz1 increase more
rapidly than the shear viscosity coefficients ifT→TNA . Note
that the expression forz1 agrees with the bulk viscosity co
efficient obtained in@5,12#.

The absorption coefficient complex correction is e
pressed via the complex inputs to the viscosities in the fo

ã~v,u!5
v2

2rc3 H z1~v!1
4

3
h1~v!12@z2~v!1h2~v!#

3cos2u1h3~v!cos4uJ . ~63!

Therefore the fluctuation corrections to the absorption co
ficient Da(v,u) and to the sound velocity dispersio
c(v,u)2c have the form

Da~v,u!5Reã~v,u!,
c-

e

-

f-

c~v,u!2c5vc2Imã~v,u!. ~64!

Equations~63! and~64! show that in the vicinity of the phas
transition point the complex correctionz1 describes the
sound damping and the velocity dispersion whereas the
rectionz2 describes the anisotropy of acoustic parameter

If h3Þ0, then Eqs.~63! and~64! predict the deviation of
the angle dependences of the acoustic properties from
form A1Bcos2u. This deviation was observed in Ref
@8,10#.

Note that the contributions to the shear viscosityh2 and,
hence, to the Leslie coefficientsa5 anda6 are proportional
to

X5
L i

L'

215
r i
2

r'
2 21,

where r i5AL i /A. Therefore these coefficients depend
the correlation length’s difference only.

Equations~40!–~49! are suitable for calculating the criti
cal corrections to all viscosity coefficients. Therefore there
a possibility to calculate the values

D1~v,u!5
a~v50,u!2a~v,u!

@v/~2p!#2
, ~65!

D2~v,u!5
c~v,u!2c~v50,u!

c
. ~66!

The latter may be measured in acoustical experiments.
total expressions forD1 andD2 may be easily obtained from
Eqs. ~63!, ~64!, and ~40!–~49!. They are not presented her
due to their awkwardness.

For low frequences,vtc!1, it is possible to describe th
character of temperature, frequency, and angular dep
dences ofD1 andD2 in a rather simple form. For this pur
pose we retain the most divergent withT→TNA terms only
in the expressions for complex viscosities~40!–~49!. Thus
we have

D15v2@A1t
2~52n i22n'!1B1t

2~41n i24n'!cos2u

1C1t
2~313n i26n'!cos4u#, ~67!

D25v4@A2t
2~42n i22n'!1B2t

2~31n i24n'!cos2u

1C2t
2~213n i26n'!cos4u#, ~68!

where t5(T2TNA)/TNA , and Ai ,Bi , and Ci ,i51,2, are
constants in the aprroximation used. Here we take into
count that the correlation lengths have the temperature
pendencesr i5r 0it

2n i,r'5r 0't2n', and for small t we
omit the unit in the expression fo
X5(r 0i /r 0')t

22(n i2n')21 sincen i.n' @2,4,11#.
Equations~67! and~68! show that the results of acoustic

experiments are sensitive to the values of the critical indi
n i andn' . The coefficientsAi ,Bi , andCi ,i51,2, may be
calculated from the angular dependences of the sound att
ation and velocity dispersion. It gives information about t
behavior of the viscosity coefficients nearN-A transitions.

The angular variation ofD1 andD2 may be quite compli-
cated if the signs of theBi andCi coefficients are opposite
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Namely, such behavior withB2,0 andC2.0 was observed
in @8# for the sound velocity dispersion.

Besides acoustic methods, it is possible to use exp
ments on the reflection of the shear wave@27# to measure the
critical behavior of the shear viscosity coefficients se
rately.

APPENDIX

In the integral in Eq.~39! we change the variablesq8,v to
q̃8,ṽ with components
ri-

-

q̃ j85qj8 , ṽ j5v j , j51,2,

q̃ 385A11Xq38 , ṽ35A11Xv3 . ~A1!

This integral term in Eq.~38! presents the contribution of th
smectic order parameter fluctuations to the stress tenso
which we use the notationiqks̃ jk,q̃,v8 . The integral is trans-
formed to the form
of
iqks̃ jk,q̃,v8 5 iqkbkBTE dq̃8

~2p!3 S 12 Fr0S ]x21~0!

]r D
s

2x21~0!1L'q̃ l8~ q̃l2q̃ l8!Gd jk2L'$q̃ k8~ q̃ j2q̃ j8!1~A11X21!@dk3q̃ 38~ q̃ j

2q̃ j8!1d j3q̃ 38~ q̃k2q̃ k8!#%2H X2 Fx21~0!2L'q̃ l8~ q̃l2q̃ l8!22L'S 2A11X21

X
21D q̃ 38~ q̃32q̃ 38!G1Z@x21~0!

1L'q̃ 82#J d j3dk3D $2 iv1b@x'
21~ q̃ 82!1x'

21
„~ q̃82q̃!2…#%21S H br

v S ]x21~0!

]r D
s

q̃l ṽ l2F X

11X

br

v S ]x21~0!

]r D
s

1 i
Z

11XG q̃3v3J @x'~ q̃ 82!1x'„~ q̃2q̃8!2…#2 i q̃ l8ṽ lx'~ q̃ 82!2 i ~ q̃l2q̃l8!ṽ lx'„~ q̃2q̃8!2…D , ~A2!

where the notation

x'~ q̃ 82!5~A1L'q̃ 82!21 ~A3!

is used. If we retain in Eq.~A2! the terms of the order ofq2 we get

iqks̃ jk,q̃,v8 5 iqkbkBTE dq̃8

~2p!3 S 12 FrS ]x21~0!

]r D
s

2x'
21~ q̃82!Gd jk1L'@ q̃ k8q̃ j81~A11X21!~dk3q̃ 38q̃ j81d j3q̃ 38q̃ k8!#

2H X2 Fx'
21~ q̃ 82!12L'S 2A11X21

X
21D q̃ 38

2G1Zx'
21~ q̃ 82!J d j3dk3D @2 iv12bx'

21~ q̃ 82!#21

3S 2H br

v S ]x21~0!

]r D
s

q̃l ṽ l2F X

11X

br

v S ]x21~0!

]r D
s

1 i
Z

11XG q̃3ṽ3J 2 i q̃ l ṽ l12iL'q̃ m8 q̃ l8q̃mṽ l D . ~A4!

The integral terms in Eq.~A4! may be presented in the form

E dq̃8

~2p!3
q̃ 38

2f ~ q̃ 82!5
1

3E dq̃8

~2p!3
q̃ 82f ~ q̃ 82!,

E dq̃8

~2p!3
q̃ 38q̃ j8 f ~ q̃

82!5
1

3
d3 jE dq̃8

~2p!3
q̃ 82f ~ q̃ 82!, ~A5!

E dq̃8

~2p!3
q̃ k8q̃ j8q̃ m8 q̃ l8q̃mṽ l f ~ q̃ 82!5

1

15
~ q̃l ṽ ld jk1q̃ j ṽk1q̃kṽ j !E dq̃8

~2p!3
q̃ 84f ~ q̃ 82!.

Using the presentation~A5! in Eq. ~A4! we can see that the value of thes̃ jk, q̃ ,v8 tensor depends on the vector components
q̃,ṽ in a similar way as the viscous part of the stress tensors̃ jk,q,v in Eq. ~8! depends on the vector components ofq,v. Then
we replace the variablesq̃,ṽ by q,v using Eq.~A1!. Thus Eq.~A4! transforms into the form

s jk,q,v8 5 i @h1~qjvk1qkv j !1~z12
2
3 h1!d jkqlv l1z2

~a!d jkq3v31z2
~b!d j3dk3qlv l1

1
2 h2@d j3~q3vk1qkv3!

1dk3~q3v j1qjv3!#1h3d j3dk3q3v3#, ~A6!

where
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h15
2bkBTL'

2

15 E dq8

~2p!3
q84x'

2 ~q82!

@2 iv12bx'
21~q82!#

,

S z12
2

3
h1D52

ibbkBTr2

v S ]x21~0!

]r D
s

2E dq8

~2p!3
x'~q82!

@2 iv12bx'
21~q82!#

,

z2
~a!52bkBTrS ]x21~0!

]r D
s

F S Z1
X

2D E dq8

~2p!3
x'~q82!

@2 iv12bx'
21~q82!#

2
XL'

3 E dq8

~2p!3
q82x'

2 ~q82!

@2 iv12bx'
21~q82!#

G ,
z2

~b!5
2ibbkBTr

v S ]x21~0!

]r D
s

F S Z1
X

2D E dq8

~2p!3
1

@2 iv12bx'
21~q82!#

2
XL'

3 E dq8

~2p!3
q82x'

2 ~q82!

@2 iv12bx'
21~q82!#

G ,
h252Xh1 ,

h35bkBTF S 2Z21 2

3
XZ1 7

30X
2D E dq8

~2p!3
1

@2 iv12bx'
21~q82!#

1
4

3
AXS Z2

1

10
XD E dq8

~2p!3
x'~q82!

@2 iv12bx'
21~q82!#

1
2

5
A2X2E dq8

~2p!3
x'
2 ~q82!

@2 iv12bx'
21~q82!#G . ~A7!

Here we leave the terms closest to begin singular.
Note that the coefficientsz2

(a) and z2
(b) have equal real parts Rez2

(a)5Rez2
(b) . It is a fluctuation correction to the bulk

viscosity coefficient z2. For the imaginary parts of z2
(a) and z2

(b) the following identity is valid:
Im@vz2

(a)2(vz2
(a))v50#5Im@vz2

(b)2(vz2
(b))v50#. This expression presents a part of the fluctuation contribution into

sound velocity dispersion. In Eqs.~A7! the expressions for the coefficientsh1 ,z2
(b) ,h2 ,h3 contain integrals depending on th

cutoff parameterqm while the most important variables

Re@z j2~z j !v50#, Im@vz j2~vz j !v50#, j51,2,

Re@h j2~h j !v50#, Im@vh j2~vh j !v50#, j51,2,3,

may be calculated without it. Performing the integration we get Eqs.~40!–~49!.
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